Konstruktion und Besonderheiten moderner Rechenzentren

Ob in klassischen Colocation- und Managed-Service-Angeboten oder den verschiedenen Ausprägungen des Cloud-Computings – am Ende müssen irgendwo physische Rechner betrieben werden. Wer einen Rechenzentrumsdienstleister wählt, sollte vor allem auf zwei Dinge achten: Sicherheit und Energieeffizienz im Rechenzentrum. Das vorliegende Whitepaper beleuchtet die wichtigsten Aspekte aus Sicht der baulichen und organisatorischen Voraussetzungen. Anhand von Beispielen wird der aktuelle Stand der Technik dargestellt. Es soll dabei klar werden, wie man einen IT-Betrieb von der physischen Seite her absichert.

Stromversorgung

Ein wichtiger Aspekt der Ausfallsicherheit ist die redundante Stromversorgung. State-of-the-Art-Rechenzentren verfügen heute, je nach Ausstattung, über bis zu fünf unabhängige Stromzuführungen. Die Stromversorgung am Rack sollte ausschließlich durch eine A- und B-Versorgung realisiert werden. Jeder Versorgungspfad wird mittels einer eigenen Online-USV gespeist. Durch eine Niederspannungshauptverteilung werden die Primär- und Sekundärstromquellen auf die USV aufgeschaltet und danach als A- und B-Feed zur IT-Fläche geführt. Die Primärversorgung wird durch das öffentliche Netz realisiert und die Sekundärversorgung durch eine Netzersatzanlage.

Im Falle eines Stromausfalls beim Energieversorger wird durch die Online-USV die Stromversorgung des Rechenzentrums bis zum Anlaufen der Netzersatzanlage überbrückt. Die Netzersatzanlage fährt automatisch bei Netzausfall an und wird innerhalb von zehn Sekunden auf Last geschaltet. Der permanente Betrieb des Rechenzentrums über die Netzersatzanlage muss durch ausreichende Treibstoffvorräte sowie über Nachlieferverträge für den Treibstoff sichergestellt sein. USVs, Generatoren und Stromzuführungen sollten erweiterbar sein, um bedarfsorientiert ausgebaut werden zu können.

Alle Stromversorgungsinstallationssysteme müssen permanent live überwacht und ausgewertet werden.

Klimatisierung

Die Umgebungsbedingungen im Rechenzentrum richten sich hinsichtlich Temperatur und relativer Luftfeuchtigkeit nach den 2011 Thermal Guidelines for Data Processing Environments des ASHRAE Technical Committee, Class A1 for Enterprise Servers and Storage Products.

Zur Optimierung der Energieeffizienz liegen die Werte für die Raumtemperatur typischerweise zwischen 19 und 24 °C. Bei der relativen Luftfeuchte liegen die Werte üblicherweise zwischen 30 und 60 %, um sowohl Korrosion durch Kondenswasser (zu feucht) und Schäden durch elektrostatische Effekte (zu trocken) zu vermeiden.

Es hat sich in den letzten Jahren bewährt, Rechenzentren mit mehreren, in sich redundanten Klimageräten (2N-Versorgung mit N+1 relevanten Bauteilen) auszustatten. Die Klimaanlage kann entsprechend den wachsenden Anforderungen erweitert werden.

Bei Ausfall einer Klimaanlage im Rechenzentrum ist gewährleistet, dass die übrigen Klimaanlagen weiterhin für eine ausreichende Klimatisierung sorgen, um den Betrieb aufrechtzuerhalten.

Die Klimatisierung der Rechenzentren erfolgte bisher in der Regel durch den Doppelboden. Das innovative Konzept der indirekt freien Kühlung verabschiedet sich von diesem Prinzip und wird von den Autoren dieses Whitepapers favorisiert. Kernstück des Konzepts ist das sogenannte KyotoCooling®-System. Bei dieser Methode strömt die gekühlte Luft direkt aus den Klimazellen auf die IT-Fläche und die Warmluft wird über einen großzügigen, mindestens ebenso hohen Abluftbereich in der Decke abgeführt. Wegen des großen Volumenstroms muss die Luft nur mit sehr geringem Druck herangeführt werden. Diese große Luftmenge fließt dank des freien Strömungsquerschnitts auf der IT-Fläche und in der Decke fast ungehindert, so dass jede Klimazelle jede andere ersetzen oder ergänzen kann.

Die Klimazelle ist horizontal und vertikal in vier Bereiche geteilt. Herzstück ist ein mehrere Meter großer radförmiger Wärmetauscher aus Aluminium. Dieses „Kyoto-Rad“ dreht sich vertikal auf Höhe der Zwischendecke mit gemächlichen 3 bis 10 Umdrehungen in der Minute. Es ist zugleich die einzige Verbindung zwischen zwei horizontal getrennten Räumen: Im RZ-zugewandten Raum ziehen Ventilatoren die warme Abluft aus dem Bereich über dem Serverraum ab, drücken sie durch die Rippen des Kyoto-Rads, woraufhin sie abgekühlt wieder zurück auf die IT-Fläche strömt.

Im oberen Teil saugen Ventilatoren Frischluft durch das Rad, um die im anderen Raum aufgenommene Wärmeenergie abzuführen. Für die Kühlung wird also Außenluft verwendet, die aber nicht ins Rechenzentrum gelangt. So muss man sich um Feuchtigkeit oder Staubgehalt der Außenluft nicht kümmern. Mit diesem regelbaren, hochvolumigen Wärmetauschverfahren schaffen die Kühlzellen jeweils 1000 kW Kühlleistung. Das gilt für fast jedes Wetter und so kommen die Kühlzellen im Schnitt an über 330 Tagen im Jahr ohne jede kostentreibende Kompressorkühlung aus.

Ein großer Vorteil dieser Klimatisierungsmethode im Gegensatz zur Wasserkühlung von Systemen: Das gesamte Rechenzentrum ist frei von Wasserleitungen. Wasserschäden mit Kurzschlüssen sind daher prinzipiell ausgeschlossen.